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ABSTRACT: Escherichia coli remains one of the principal pathogens that
cause nosocomial infections, medical conditions that are increasingly common
in healthcare facilities. E. coli is intrinsically resistant to many antibiotics, and
multidrug-resistant strains have emerged recently. Chemoinformatics has been
a great ally of experimental methodologies such as high-throughput screening,
playing an important role in the discovery of effective antibacterial agents.
However, there is no approach that can design safer anti-E. coli agents, because
of the multifactorial nature and complexity of bacterial diseases and the lack of
desirable ADMET (absorption, distribution, metabolism, elimination, and
toxicity) profiles as a major cause of disapproval of drugs. In this work, we
introduce the first multitasking model based on quantitative−structure
biological effect relationships (mtk-QSBER) for simultaneous virtual prediction
of anti-E. coli activities and ADMET properties of drugs and/or chemicals
under many experimental conditions. The mtk-QSBER model was developed from a large and heterogeneous data set of more
than 37800 cases, exhibiting overall accuracies of >95% in both training and prediction (validation) sets. The utility of our mtk-
QSBER model was demonstrated by performing virtual prediction of properties for the investigational drug avarofloxacin (AVX)
under 260 different experimental conditions. Results converged with the experimental evidence, confirming the remarkable anti-
E. coli activities and safety of AVX. Predictions also showed that our mtk-QSBER model can be a promising computational tool
for virtual screening of desirable anti-E. coli agents, and this chemoinformatic approach could be extended to the search for safer
drugs with defined pharmacological activities.
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■ INTRODUCTION

Resistance of bacteria to current antibiotics is one of the most
alarming problems worldwide, affecting even healthcare
facilities, which have been remarkably impacted. Thus, health
compromising situations have emerged, nosocomial infections.1

In this sense, one of the most common and dangerous
pathogens is Escherichia coli, a Gram-negative bacterium that
belongs to the family Enterobacteriaceae. E. coli can cause
several diseases in humans, including peritonitis, septicemia,
gastroenteritis, and urinary tract infections, the last being one of
the main nosocomial diseases.2 As in the case of many other
Gram-negative bacteria, E. coli displays intrinsic resistance to
several antibiotics because of its relatively impermeable cell
wall.2 In fact, in recent years, several resistant strains have
emerged even in highly developed countries.3 For this reason,
the search for more potent antibacterial agents against the
bacterium mentioned above should be an aspect of particular
interest in antimicrobial research.
Despite the advances of science and technology, drug

discovery remains a slow, expensive, and inefficient process
with a low rate of new therapeutic discovery, taking 15−17
years with a cost of approximately US$1778 million.4 Despite

the existence of promising experimental methodologies such as
high-throughput screening (HTS), it is not possible to cover
the huge molecular space (1063 small to medium size
molecules).5 For this reason, while the number of hits have
substantially increased with the use of HTS, no corresponding
growth in the number of antibacterial (or other) drugs entering
the market has been observed.6 Therefore, it is mandatory to
continue the integration of HTS with disciplines involving
virtual screening.7 In this sense, chemoinformatics has served as
an essential support for experimental methodologies such as
HTS, helping to rationalize the chemical synthesis and
contributing to diminish the length of time and cost of the
experiments.8 Regardless, the battle against E. coli will depend
on the discovery of new and potent antibacterial chemicals,
displaying also ADMET (absorption, distribution, metabolism,
elimination, and toxicity) profiles that are as desirable as
possible. From one side, in the field related to the discovery of
antibacterial agents, some relevant works have been reported,
dealing with synthesis, evaluation, and in silico analysis of anti-E.
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coli compounds.9 However, most of the computer-aided
methodologies applied to date have been used against only
one target (usually a protein), and the analyses have been
realized by employing analogous series of compounds. This fact
does not permit a deeper exploration of the chemical space in
terms of molecular diversity and complexity. Additionally,
advances in systems biology and complexity sciences suggest
that complex diseases, including those associated with bacterial
pathogens, are multifactorial.10 On the other hand, when an
antibacterial (or any) drug candidate is developed, great
concern about the possible undesirable ADMET properties,
which constitute a major aspect of disapproval of drugs, is
expected.11 Furthermore, computational approaches applied to
the modeling of ADMET profiles exhibit the same disadvan-
tages observed for the design of anti-E. coli agents.
Until now, no chemoinformatic model has been able to

simultaneously predict anti-E. coli activity and ADMET
properties. In recent years, several researchers have emphasized
the use of methodologies that allow the assessment of multiple
pharmacological activities against many biological targets
(biomacromolecules, microorganisms, cell lines, etc.),12 and
the integration of different kinds of chemical and biological
data.13 By considering all the ideas mentioned above, we
introduce in this work the first multitasking model based on
quantitative−-structure biological effect relationships (mtk-
QSBER) for simultaneous prediction of anti-E. coli activities
and ADMET profiles of chemicals.

■ EXPERIMENTAL PROCEDURES

Database, Molecular Descriptors, and Development
of the mtk-QSBER Model. We retrieved a large data set from
the highly accurate public source CHEMBL,14 which is
available at http://www.ebi.ac.uk/chembldb/. Our data set

contained 37834 cases/endpoints, which are the result of the
evaluation of 23705 drugs/chemicals (Nc) under more than one
experimental condition cj. The term “experimental condition”
can be considered as an ontology,13b,d which has the form cj →
(me, bt, ai, tm, lc). In this sense, me defines the measure of a
specific biological effect (anti-E. coli activity, toxicity, half-life
time, bioavailability, etc.). The element bt describes the different
biological targets such as strains of E. coli and their
biomacromolecules (proteins), mice, rats, Homo sapiens, etc.
On the other hand, and considering the test conditions, ai
focuses on the assay information, i.e., if the test was realized by
measuring binding (B), functional (F), or ADMET (A) effects.
Also, tm refers to target mapping, which is the degree of
certainty about whether the assay is really intended to measure
the effect on a given type of biological target. Finally, the
element lc considers the level of curation/verification of the
experimental information of a particular assay. Each combina-
tion of the elements me, bt, ai, tm, and lc defines a unique
experimental condition cj. Taking into account all these ideas,
we can say that the data set of 37834 cases/endpoints was
obtained from 23705 (Nc) different compounds, for which at
least one of 18 (Nme) measures of biological effects was used, at
least one of 148 (Nbt) biological targets was involved, with at
least one of 3 (Nai) types of assay information, considering at
least one of 7 (Ntm) degrees of target mapping, and with at
least one of 3 (Nlc) levels of curation of experimental
information. For the case of the element me, several measures
of biological effects were found to appear in different units. For
this reason, all the values of anti-E. coli activities were
transformed to nanomoles per liter (nanomolar); the areas
under the curves (AUC) were expressed in micromolar per
hour, and all toxicity values were converted to micromoles per
kilogram.

Table 1. Cutoff Values for Diverse Measures of Biological Effects

measure of effect
(units) biological profile concept cutoff valuea

AC50 (nM) ADMET (metabolism) concentration to elicit 50% of the maximal effect ≤6309.58
AUC (μM h),
iv-LA

ADMET (bioavailability,
elimination)

area under the curve after intravenous administration in laboratory animals (Mus musculus
and/or Rattus norvegicus)

≥10.00

AUC (μM h),
oral-H

ADMET (bioavailability,
elimination)

area under the curve after oral administration in humans ≥53.45

AUC (μM h),
oral-LA

ADMET (bioavailability,
elimination)

area under the curve after oral administration in laboratory animals (M. musculus and/or R.
norvegicus)

≥15.00

F (%), oral ADMET (bioavailability) oral bioavailability assessed as the fraction of an orally administered drug that reaches systemic
circulation

≥60.00

IC50 (nM), ip antibacterial activity concentration required for 50% inhibition of the activity of a protein or enzyme present in E.
coli

≤200.00

Ki (nM) antibacterial activity inhibition constant associated with a protein or enzyme present in E. coli ≤250.00
LD50 (μmol/kg), ip ADMET (toxicity) lethal dose at 50% after intraperitoneal administration ≥1110.00
LD50 (μmol/kg),
oral

ADMET (toxicity) lethal dose at 50% after oral administration ≥1541.75

MIC (nM) antibacterial activity minimal inhibitory concentration against E. coli ≤20000.00
MIC50 (nM) antibacterial activity minimal inhibitory concentration at which 50% of isolates belonging to E. coli are inhibited ≤9000.30
MIC90 (nM) antibacterial activity minimal inhibitory concentration at which 90% of isolates belonging to E. coli are inhibited ≤17071.41
Papp (nm/s) ADMET (absorption) permeability ≥60.00
T1/2 (h), iv-LA ADMET (elimination) half-life after intravenous administration in laboratory animals (M. musculus and/or R.

norvegicus)
≥1.00

T1/2 (h), oral-H ADMET (elimination) half-life after oral administration in humans ≥3.00
T1/2 (h), oral-LA ADMET (elimination) half-life after oral administration in laboratory animals (M. musculus and/or R. norvegicus) ≥1.52
TD50 (μmol/kg),
ip

ADMET (toxicity) toxic dose at 50% after intraperitoneal administration ≥406.54

Vdss (L/kg), iv ADMET (distribution) volume of distribution at steady state after intravenous administration ≥1.00
aCondition under which a compound/case is considered to be positive.
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Each of the 37834 cases was assigned to one of two possible
groups related to the biological effect of a defined compound i
under a specific condition cj [BEi(cj)]. Thus, a compound/case
was selected as positive [BEi(cj) = 1] when it displayed high
anti-E. coli activity or any favorable ADMET profile; otherwise,
the compound was considered as negative [BEi(cj) = −1]. All
assignments were realized by taking into account certain
arbitrary cutoff values of biological effects that are listed in
Table 1. For the complete data set, we used a *txt file
containing the SMILES codes of the compounds/cases. The
extension of this file was changed to *.smi, which was then
transformed to *.sdf by using OpenBabel version 2.3.0.15 For
the calculation of molecular descriptors from the *.sdf file, we
employed TOMOCOMD-CARDD.16 Descriptors used here
are based on the application of discrete mathematics and linear
algebra theory to chemistry,17 which can be used to characterize
the molecular structure. In this study, we selected the
descriptors called atom-based quadratic indices (qk

PP), which
were calculated from order 0 to 5, considering the hydro-
phobicity, the polar surface area, the atomic weight, and the
refractivity as physicochemical properties (PP). The mathe-
matical background of these descriptors has been explained in
several interesting works.17c,18 Therefore, we will give just the
essential ideas. Given a graph-theoretical square matrix M of n
× n vertices (atom), qk(x) can be calculated from the kth power
of matrix M by using the following general equation:

∑ ∑̅ = =
= =

q m x xx X M X( ) [ ][ ] [ ]k
k

i

n

j

n
k

ij i j
T

1 1 (1)

where x ̅ is a molecular vector and [XT] is the transpose of [X],
which is a column vector (n × 1 matrix) whose components are
x1, ..., xn. In addition, the term kmij represents the elements of
the kth power of M. The components x of the column vector
[X] are used as PP.
The purpose here is to predict the biological effect of any

compound depending on its molecular structure and the
experimental conditions cj under which the compound was
tested. Then, if we use the original quadratic indices weighted
by any physicochemical property (qk

PP), we will not be able to
discriminate the biological effect of a compound by varying the
different elements of the condition/ontology cj. For this reason,
inspired by the application of the moving average approach
(MAA),19 we introduced new sets of molecular descriptors like
qk

PP, according to the following simple equation:

Δ = −q c q q c( ) avg ( )k j k k j
PP PP PP

(2)

where qk
PP is the quadratic index of order k, weighted by a

defined PP. The descriptor avgqk
PP(cj) characterizes each set nj

of compounds assayed under the same experimental condition
cj, being calculated as the average of all the qk

PP values for
compounds in a subset of nj, which were considered as positive
cases [BEi(cj) = 1] in the same element of the ontology cj.

Thus, in the case of the element bt, the descriptor avgqk
PP(cj)

for a set nj of compounds tested against a specific biological
target bt (protein, cell line, etc.) was calculated as the average of
the qk

PP values by considering only the subset of nj, i.e., those
compounds that were considered positive [BEi(cj) = 1] against
that biological target. A similar operation was also realized for
elements me, ai, tm, and lc. Regardless, in eq 2, the most
important element is the descriptor ΔqkPP(cj), which describes
both the molecular structure and the experimental condition cj.
Then, only ΔqkPP(cj) descriptors (120 in total) were used to
develop the mtk-QSBER model.
The data set containing 37834 cases was randomly split into

two series: training and prediction sets. The training set was
used to construct the mtk-QSBER model, containing 28383
cases, with 13203 of them considered as positive and 15180 as
negative. The prediction (validation) set was employed to
demonstrate the predictive power of the model. This set
comprised 9451 cases, 4431 positive and 5020 negative. Linear
discriminant analysis (LDA) was used as the pattern
classification technique to find the best model, using a forward
stepwise procedure as variable selection strategy. To perform
this task, STATISTICA version 6.0 was used.20 The mtk-
QSBER model has the following general equation:

∑= + × Δ
=

c a b cBE ( ) MD ( )i j
j

i i j0
1

5

(3)

where ΔMDi(cj) refers to ΔqkPP(cj) and BEi(cj) is the real score
that represents the propensity of compound i to have a given
biological effect under a specific experimental condition cj. In eq
3, a0 is the constant, and bi values can be considered as the
coefficients of the variables. The quality of the mtk-QSBER
model was analyzed by examining some statistical indices such
as Wilks’ lambda (λ), χ2, and the p level.21 We also calculated
the sensitivity (percentage of correct classification for positive
cases), specificity (percentage of correct classification for
negative cases), accuracy (overall correct classification), and
the Mathews correlation coefficient (MCC) as measure of the
quality of binary classifications,22 and the areas under the
receiver operating characteristic (ROC) curves.23

■ RESULTS AND DISCUSSION

mtk-QSBER Model. Together with the variable selection
strategy mentioned above, we also applied the principle of
parsimony, which means that the model with the highest
statistical quality but with the fewest possible descriptors should
be selected. Thus, the best mtk-QSBER model that was found
(a five-variable equation) is given below:

Table 2. Final Variables That Were Used in the mtk-QSBER Model

descriptor concept

Δq0PSA(me) deviation of the quadratic index of order 0 weighted by the polar surface area, depending on the molecular structure and a measure of the biological
effect

Δq2Hyd(ai) deviation of the quadratic index of order 2 weighted by the hydrophobicity, depending on the molecular structure and the assay information
Δq2PSA(bt) deviation of the quadratic index of order 2 weighted by the polar surface area, depending on the molecular structure and the biological target
Δq1AW(tm) deviation of the quadratic index of order 1 weighted by the atomic weight, depending on the molecular structure and the target mapping
Δq5R(lc) deviation of the quadratic index of order 5 weighted by the refractivity, depending on the molecular structure and the level of curation of the

experimental information
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The symbols and meanings of the different variables
(descriptors) used in the model are listed in Table 2. With
regard to the different statistical indices mentioned above, we
can say that small values of λ and p level and the large χ2 are
indicative of the high statistical quality of our mtk-QSBER
model, which could correctly classify 27235 of 28383 cases, for
an accuracy of 95.96% in the training set; in the prediction set,
9047 of 9451 cases were rightly classified, for an accuracy of
95.73%. More details about specific percentages of classification
appear in Table 3, while all relevant biological and chemical

data associated with each case/compound as well as their
respective classifications are listed in the first file of Supporting
Information. Additionally, all the average descriptors [used to
generate those of the type ΔqkPP(cj)] that depend on the
elements me, bt, ai, tm, and lc, can be found in the second file of
the Supporting Information.
The areas under the ROC (receiver operating characteristic)

curves were analyzed as final evidence of the quality and
predictive power of the mtk-QSBER model. The value was
0.992 for both training and prediction sets (Figure 1),
demonstrating that our mtk-QSBER model is not a random
classifier because the areas under the ROC curves are very
different from those obtained by random classifiers (which have
an area of 0.5). We need to emphasize that the cases belonging
to the prediction set were never used to construct the model.
So, from an analysis of Table 3, the ROC curves, and the first
and second files of the Supporting Information, it is intuitive to
see that the mtk-QSBER model developed here has an excellent
quality and predictive power, which is in agreement with other
reports from the literature.12,13

An important element regarding the creation of our mtk-
QSBER model described by eq 4 is that the descriptors that
were employed can have simple physicochemical and/or
structural information (Table 2). In essence, the biological
effect of any compound can be enhanced by increasing the
global polar surface area of the whole molecule, which is
described by Δq0PSA(me), depending on the molecular structure
and the measure of the biological effect. At the same time, the
descriptor mentioned above is constrained by Δq2PSA(bt),

which represents the diminution of the polar surface area in
regions where the topological distance (number of bonds)
between atoms is two. In this sense, the diminution expressed
by Δq2PSA(bt) will take into consideration both the molecular
structure and the biological target. Regardless, the previous
ideas about Δq0PSA(me) and Δq2PSA(bt) demonstrate that polar
interactions (for example, hydrogen bonds) are important for
the increment of a specific biological effect of a molecule under
defined experimental conditions. On the other hand, the
information provided by the descriptor Δq2Hyd(ai) is consistent
with that described by Δq2PSA(bt), because the diminution of
the polar surface area in the same regions (topological distance
equal to two) means an increment in the hydrophobicity.
However, in this case, Δq2Hyd(ai) will depend on the molecular
structure and the assay information. Additionally, Δq1AW(tm) is
dependent on the chemical structure and the target mapping
(type of biological target). With regard to the appearance and/
or enhancement of a biological effect, this descriptor will
contain information about the reduction of the global molecular
size, considering each atom and its chemical environment
formed by the other atoms adjacent to it. Finally, the descriptor
Δq5R(lc) will depend on both the molecular structure and the
quality and reliability of the assay, involving a diminution of the
polarizability of those molecular regions where the topological
distance (number of bonds) between atoms is five.

Avarofloxacin. Virtual Prediction of Diverse Biological
Effects. To demonstrate the practical utility of our mtk-
QSBER model, we performed a simultaneous virtual prediction
of anti-E. coli and ADMET profiles for avarofloxacin (AVX)
(Figure 2), a potent and versatile antibacterial agent that has
undergone phase II clinical trials with excellent results. AVX
was discovered by Janssen Pharmaceutica N.V., a unit of the
Johnson & Johnson company, and Furiex Pharmaceuticals has

Table 3. Performance of the mtk-QSBER Model

classificationa,b training set prediction set

NCtotal 28383 9451
NCpositive 13203 4431
CCCpositive 12679 4235
sens (%)c 96.03 95.58
NCnegative 15180 5020
CCCnegative 14556 4812
spec (%)d 95.89 95.86
acc (%)e 95.96 95.73
MCCf 0.919 0.914

aNC, number of cases. bCCC, correctly classified cases. cSensitivity.
dSpecificity. eAccuracy. fMathews correlation coefficient.

Figure 1. ROC curves obtained from the mtk-QSBER model.

Figure 2. Chemical structure of avarofloxacin (JNJ-Q2).
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obtained a license to globally develop and commercialize the
product. Detailed information regarding the status of this
investigational antibacterial drug is available on the Web site of
Furiex Pharmaceuticals at http://www.furiex.com/pipeline/
discoverydevelopment-pipeline/fluoroquinolone/. AVX, also
known as JNJ-Q2, has displayed very high antibacterial activity
against both Gram-positive and Gram-negative bacteria,
including strains of E. coli with different degrees of sensitivity
to antibiotics.24 In this sense, AVX has been reported to have a
MIC50 of 0.06 μg/mL (143.05 nM) and a MIC90 of 0.25 μg/
mL (596.06 nM) against susceptible and intermediate strains of
E. coli, with the highest value of MIC being 0.50 μg/mL
(1192.12 nM).24 In the same report, and for the case of
resistant strains of the same bacterium, AVX had a MIC50 of 4
μg/mL (9536.98 nM) and a MIC90 of 16 μg/mL (38147.92
nM). Thus, in terms of biological activity against E. coli, and
considering the cutoff values listed in Table 1, AVX can be
classified as positive. We did not find preclinical studies of this
investigational drug available in the literature. However, clinical
assays have been recently reported,25 showing that AVX had an
absolute bioavailability F of 0.65 (65%) and a volume of
distribution at steady state of 146.7 L after intravenous
administration, which divided by the maximum weight (100
kg) for a healthy human participating in clinical assays yields a
values for Vdss (iv) of 1.467 L/kg. Also, other desirable
ADMET parameters were as follows: AUC = 35.8 μg h mL−1

after oral administration, which is equivalent to AUC (oral-H)
= 85.36 μM h, and T1/2 (oral-H) = 14.4 h. According to all
these experimental ADMET parameters, and by applying the
same criteria of cutoff values listed in Table 1, we should be
able to classify AVX as being positive.
We used our mtk-QSBER model to perform virtual

prediction of many biological effects of AVX under 260 diverse
experimental conditions, which represent combinations of the
five elements of the ontology cj explained in the previous
section. Results of these virtual predictions are listed in the
third file of the Supporting Information, indicating that AVX is
very active against drug susceptible and intermediate strains of
E. coli. Predictions also suggest that this investigational
antibacterial drug may be active against fluoroquinolone-
resistant and MDR strains. At the molecular level, and
considering the cutoff values listed in Table 1 [IC50 (ip) ≤
200.00 nM, and Ki ≤ 250.00 nM], AVX was predicted to be
positive, i.e., an inhibitor of several proteins, including
topoisomerases.
On the other hand, and with regard to ADMET profiles,

virtual predictions confirm the drug mentioned above is a safe
antibacterial agent. In this sense, AVX was predicted to be
positive, displaying good bioavailability, and a volume of
distribution at the steady state. Also, AVX was classified as
desirable with respect to its AUC (μM h), oral-H, and
elimination profiles [T1/2 (h), oral-H]. As explained above,
preclinical assays are not reported. However, the predictions
associated with toxicity profiles such as LD50 and TD50, which
act as complements of clinical assays, permit us to recognize
AVX as safe regardless of the different laboratory animal strains
on which the tests were conducted. Similar results of safety
were predicted for pharmacokinetic parameters such as AUC
and T1/2, AVX being predicted to be positive by considering
intravenous and oral routes of administration. In terms of
metabolism, our calculations suggest that, as expected for
fluoroquinolones, several cytochromes (CYP) can be inhibited
by AVX. If we take into account all the virtual predictions

realized for AVX, we can say that our mtk-QSBER model
helped to demonstrate why this investigational drug is ready to
be used in phase III clinical trials. At the same time, we are
confirming the ability of our mtk-QSBER model to be
employed for virtual screening of safer anti-E. coli agents,
serving as excellent ally to HTS in the field of antibacterial
research to rationally filter huge libraries of chemicals and
drugs. Consequently, this chemoinformatic approach that was
applied to develop the mtk-QSBER model could be extended
to diverse areas, permitting integration of diverse pharmaco-
logical activities with ADMET properties, in an attempt to
search for more effective drugs with desirable profiles.

■ CONCLUSIONS
Over the centuries, humankind has been the victim of bacterial
diseases. Today, novel chemoinformatic approaches are
required to rationalize drug discovery in antimicrobial research,
to eliminate the alarming resistance of bacteria to current
antibiotics. Our unified mtk-QSBER model represents an
attempt to face this problem. In this sense, the mtk-QSBER
model that was developed by using a large and heterogeneous
data set of compounds allowed us to perform simultaneous
virtual prediction of anti-E. coli activities and ADMET
properties. The model, displaying very good accuracy for
classification of compounds as positive or negative, was
employed with one single but important objective, to help
powerful methodologies such as HTS to prioritize and/or filter
molecules from the huge chemical space, looking for the
structural patterns associated with or related to the biological
profiles discussed in our study. This fact was confirmed by
performing multiple virtual predictions of different properties
of AVX under rigorous conditions, experimental and theoretical
results being strongly related. The development of this mtk-
QSBER model can be viewed as a new horizon for the design
and in silico selection of desirable anti-E. coli agents.
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